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Abstract

The collaborative effort between GMR Research & Technology and the University of Wisconsin -
Madison aimed at finding novel approaches in reduced rate representation and sampling. The effort
concentrated on exploring data-adaptive techniques and non-adaptive structured sensing, as well as
comparing randomized projection based approaches to nonlinear affine (NoLAff) approaches.

The approaches explored in this work share a common theme of improving upon purely random
encoding. Adaptive sampling utilizes partial information from previous observations to focus subsequent
observations onto relevant signal components, and provides significant improvements in the measurement
signal-to-noise ratio. Toeplitz structured matrices are effective sensing structures that are efficient to
generate and implement in practice. The acquisition process of NoLAff sampling can be approximately
modeled using special deterministic sensing matrices, and the inherent structure can be leveraged to
reduce decoding from convex optimization to hypothesis testing, which is efficient both computationally
and from a data rate perspective.



1 Overview

The collaborative effort between GMR Research & Technology, Inc. and the University of Wisconsin
- Madison was aimed at exploiting the expertise of the teams in nonlinear and affine signal processing and
in compressed sensing (CS) toward finding new approaches in reduced rate representation and sampling and
related areas of research. The effort whose final results are described here concentrated on exploring data
adaptive techniques, Toeplitz structured sensing, and comparing randomized projection based compressive
sensing approaches to nonlinear affine approaches.

In Part 4 we describe an adaptive approach to CS. The theory of compressed sensing shows that samples
in the form of random projections are optimal for recovering sparse signals in high-dimensional spaces (i.e.,
finding needles in haystacks), provided the measurements are noiseless. However, noise is almost always
present in applications, and compressed sensing suffers from it. The signal to noise ratio per dimension using
random projections is very poor, since sensing energy is equally distributed over all dimensions. Consequent ly,
the ability of compressed sensing to locate sparse components degrades significantly as noise increases. It
is possible, in principle, to improve performance by "shaping" the projections to focus sensing energy in
proper dimensions. The main question addressed here is, can projections be adaptively shaped to achieve
this focusing effect? The answer is yes, and we demonstrate a simple, computationally efficient procedure
that does so. This section is essentially the conference paper we (R. M. Castro, J. Haupt, R. Nowak, C.
Raz) presented at ICASSP 08.

Part II explores novel CS matrices which allow CS applications of high dimensionality and compressed
excitation for system identification. The problem of recovering a sparse signal x E R" from a relatively
small number of its observations of the form y = Ax E Rk, where A is a known matrix and k < n, has
recently received a lot of attention under the rubric of compressed sensing (CS) and has applications in
many areas of signal processing such as data compression, image processing, dimensionality reduction, etc.
Recent, work has established that if A is a random matrix with entries drawn independently from certain
probability distributions then exact recovery of x from these observations can be guaranteed with high
probability. In this paper, we show that Toeplitz-structured matrices with entries drawn independently from
the same distributions are also sufficient to recover x from y with high probability, and we compare the
performance of such matrices with that of fully independent and identically distributed ones. The use of
Toeplitz matrices in CS applications has several potential advantages: (i) they require the generation of only
0(n) independent random variables; (ii) multiplication with Toeplitz matrices can be efficiently implemented
using fast Fourier transform, resulting in faster acquisition and reconstruction algorithms; and (iii) Toeplitz-
structured matrices arise naturally in certain application areas such as system identification. This section
summarizes results from a conference paper we (W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and
R. D. Nowak) presented at SSP 07, and our recent refinement that appeared at CISS 08.

Finally, Part III discusses comparisons of randomized projection based approaches to compressive sensing
to the deterministic nonlinear affine approach. While NoLAff does not strictly speaking use a sensing matrix
it nonetheless can be shown to have nearly equivalent encoding structures that can be described in the quasi
linear approximation cases as a deterministic sensing matrix. This approach in particular allows us to move
away from the convex optimization decoding approaches to a hypothesis testing approach which has been
shown to be highly efficient from a data rate perspective; essentially allowing innovations rate sampling.
The sensing matrix equivalent in NoLAff allows the encoder to retain some of the orthogonality between
signal subspaces of interest and hence allows us to have both computationally efficient and data rate efficient
compressive sensing.
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Part I

Finding Needles in Noisy Haystacks

2 Introduction
Surprising mathematical findings and stunning practical results have propelled compressed sensing into the
signal processing limelight and have had a profound effect on our understanding of signal acquisition and
sampling. Consider a signal that can be represented (exactly or approximately) by a sparse representation
(the superposition of a small number of basis vectors). The basic idea of compressed sensing is that if one
takes samples in the form of projections of the signal and if these projections are incoherent with the basis
vectors, then the sparse representation can be recovered from a small number of such samples (roughly
proportional to the number of components in the sparse representation) provided the observations are 1oise-
fr,ee [2,4]. In addition, compressed sensing remains stable in the presence of random noise: i.e., t he recovery
degrades gracefully, but markedly, as the noise level is increased [3,4]. This paper investigates the noise
sensitivity phenomenon and proposes an improved approach based on adaptive sensing.

Incoherence between the projection vectors and the signal basis vectors is essential to compressed sensing,
and is required for successful recovery from a small number of non-adaptive samples. The incoherence
condition guarantees that one "spreads" the sensing energy over all the dimensions of the coordinate system
of the basis. In essence, each compressive sample deposits an equal fraction of sensing energy in every
dimension, making it possible to locate the sparse components without sensing directly in each and every
dimension, which would require a number of samples equal to the length of the signal. When the observations
are corrupted by noise, however, the signal to noise ratio (SNR) per dimension is necessarily much lower
using this approach than if we had used all sensing energy to probe a single coordinate. Thus, noise can
make the recovery of the sparse components nmuch more difficult.

It is intuitively clear that focused samples can be tremendously helpful. Indeed, if a genie were to provide
the locations of the sparse signal components a priori, then we would know that the optimal samples would
be projections on to the corresponding basis vectors themselves, maximizing the SNR per sample. Without
a genie, it is sensible to attempt to recover the locations directly so that subsequent samples can be focused
into the correct subspace. The potential advantages of an adaptive projection scheme are demonstrated
in [5[, but this procedure does not scale well with problem dimension. Here we propose a different adaptive
strategy for which the shaping of the projections can be computed in time linear in the length of the signal.
and therefore is no more computationally demanding than standard compressed sensing. Begin with an
incoherent projection sample, which should provide a crude indication of potential locations for the sparse
components. Now, use this information to shape the next projection so that it is a bit less incoherent and a
bit more focused on these potential locations. Repeat this procedure until the projections are mostly focused
on one location, which hopefully corresponds to an actual signal component. Keep iterating this )rocess.
with the previously identified components removed, until no additional significant co)omnents are found.

The remainder of the paper is organized as follows. A brief review of traditional (non-adaptive) con-
pressive sensing is given in Section 3. In Section 4 we describe our strategy for projection focusing that is
based on a general-purpose Bayesian model for sparse components and an (approximate) entropy-maximizing
projection shaping at each step. Computational experiments in Section 5 demonstrate that significant, per-
formance gains are possible through this adaptive procedure, especially when the signal is very sparse and
the SNR per dimension is low. Finally, some conclusions are discussed in Section 11.

3 Compressive Sensing Review
Compressive sensing (CS) describes a collection of methods by which sparse high-dimensional signals can
be accurately and efficiently recovered from a small (relative to the dimension) number of observations. CS
employs a sampling model which is a natural generalization of conventional point sampling. Each observation
of an rn-sparse vector x e R" is described by

Y(t) = 0(t)TX + W(t), (I)
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for t = 1,2 ..... where the sampling vector 0(t) E R1 is chosen by and known to the observer and satisfies

110(0112 = 1, and W(t) ,- , (0, o,) is independent of 0(t).
The earliest contributions to CS considered noiseless settings where the sampling vectors {(t)} I were

a collection of random vectors whose entries were drawn independently according to some distribution (c.g.
Gaussian). In these settings, it was shown that Basis Pursuit (identifying the vector with minimum I norin

that agrees with the observations) efficiently recovers any rn-sparse signal with overwhelming probability.
provided the number of observations satisfies k > Cm log n where C is some constant that does not depend
on the problem dimension [2,4]. In practice, it has been observed that between 3m and 5m samples often
suffice.

In settings where sampling noise is present, the provable performance of CS degrades markedly. The
Basis Pursuit approach does not apply directly in this setting, and one possible estimation strategy is to
minimize the weighted sun of a squared error term and a complexity term, given by

ik = arg min 11y - ± Ttg]]1. (2)
gER 2

where y is a vector of the observations {y(t)}1=1 , is a matrix with rows given by the corresponding
0(t), and r is an appropriate tolerance. Other similar strategies have been proposed and analyzed, yielding
estimates that satisfy

E [ lik :5 2 C ( k )-1:i

where C is a constant that depends on the noise power, and the expectation is over the distribution of the
noise and the projection vectors [3,4]. It is interesting to note that this bound is meaningful only when the
number of observations is at least O(m log n). This is similar to the number of observations required in the
noise-free setting - the difference here is that the error decays relatively slowly after this point.

4 Adaptive Projections for Sparse Recovery

In this section we present an adaptive projection algorithm targeting problems where the signal is very
sparse (e.g., described by a small number of components). The proposed approach consists of a greedY
procedure that attempts to recover the signal sequentially, component-by-component, and is inspired by our
earlier work [6] where we considered a parametric model. In this work we use a related model for which it is
easy to use a Bayesian approach to estimate the parameters. In [6] this is done using non-adaptive randoin
projections. Here we propose a technique to adapt the projections based on previous observations, in order
to significantly improve the estimation performance. We first describe our methodology when the signal has
a single non-zero component, and later we generalize this approach for sparse signals with multiple non-zero
components.

4.1 A Single Needle in the Haystack

Let, x E R"n , n E N be a vector with at most one non-zero entry. The adaptive projection procedure
propos d follows a Bayesian style approach, and so we have a generative model for the signal x. Let t index
the sequential sampling process. At step t, define the random variable L(t) E {1 ....n}, with probability
mass function pi(t) = Pr(L(t) = i). That is, L(t) is a discrete random variable over the indices of the signal,
modeling that entry i is nonzero with probability pi(t). Conditional on the value of L(t) the amplitude of
the non-zero signal component is modeled as a Gaussian random variable, A(t)JL(t) = i - V(p,t), (7,(t)).
Thus, our model has the form

X(t) = (0 .... 0, A(t), 0. .. ,0)

where only the entry L(t) of X(t) is non-zero. We assume x is a realization of random variable X(f). Not ice

that the distribution is paraineterized by three quantities: p(t) 4 (p I(t) .... Pn()), it(t) = (pI (t)..... p,, (I)),

and o 2 (t) ( t ).. (t)). Initially, when t = 0 and no samples have been taken, we start witi

IThe f, norm is defined by ilxltl 1 -: xil, where xi is the ith component of x.
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a uniform prior on the location, and zero mean distribution for the conditional amplitude, specifically

p(O) 4 (1/n . I/n), jA(O) = (0,. 0) and oa(0) = (a . .0), where o2 > 0. This prior distribution
is updated in a Bayesian manner as samples are acquired, giving rise to the model at step t, as described
above.

Recall the observation model in (1). Using Bayes rule we can update the posterior distribution, and
straightforward calculations yield the following update rules

07dt)(t)y(t) + pi(t)0,
p2l +(t)U2t) + a2

u2(t + 1) 
= 

t

0?(t)a(t) + a2 '

Pi(t) ( 1 (y(t) 0
p2(t() X O (t) +a 2 .exp 2 22(t)0,(t) + C,2

where y(t) is a realization of Y(t), and in the update of p(t + 1) we omit the explicit expression of the
normalization constant.

The choice of the projection vectors 0(t) is critical for good performance. If we are constrained not to use
adaptive projections it is known that random projections are as uniformly informative as possible. These
can be, for example, Rademacher random vectors (n-vectors comprised of i.i.d. random variables taking
values ±l/v4 with equal probability). However, if that constraint is removed and adaptivity is allowed,
then one can use information gleaned from previous samples to "focus" the projection vectors, leading to
better performance.

We propose the following methodology: define the "shaped" random projection

0(t + 1) = (.1p(t)B1, p2 (t)B 2 , ... , B.)

where {Bi} are i.i.d. random variables, taking value ±1 with equal probability. Note that since E-'i= (t) =

I (because p is a discrete probability distribution) we have 110(t)1 2 = 1. If at time t we are very confident
that i is the only non-zero entry of x, that is pi(t) is close to 1, then the shaped projection vector is going
to put a large amount of mass on that entry. While this may appear intuitively reasonable, there is also a
principled rationale for this particular shaping procedure, namely it is an attempt to make observation Y(t)
as informative as possible.

A way of characterizing the information content of Y(t) is to compute its differential entropy, as defined
in [7]. In other words we want to find 0(t + 1) solving

argmax H(hTX(t) + W(t + 1)) , (.1)
h:JlhJ 2 =1

where H(.) is the differential entropy and X(t) is a random variable distributed according our generative
model at step t. In other words X(t) reflects our knowledge of x at time t. Now note that under our model
hTX(t) is distributed as a Gaussian mixture with n components (recall that at most one entry of X(t) is
non-zero). In part icular the density of hTX(t) is

exp -ip() .
i=l 2h,?C2 (t)

There is no closed form expression for the differential entropy of a Gaussian mixture. Instead, using the fact
that the conditional differential entropy is a lower bound for the differential entropy [7], and conditioning on
the selection of the mixture component, we obtain

1n
H(hTX(t)) > -log 27reII(h?a(t))P(t) I

2 (h 2
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Replacing the entropy in (4) by the lower bound yields

O(th+=1) =argnax log 27re (hic i(t))PIt)
h: 11h112 1 2

i=1

arg max pi(t) log(h )h:11hJ12=1

It is easily shown that 2i(t + 1) = ± p(t), which motivates our choice of projection vectors.
When a budget of k projective observations is allowed one can use the above algorithm to collect all the

observations, and the final estimate can be computed from the posterior (different estimates should be used,
to minimize the desired cost function). If optimizing mean squared error, then the best estimate is simply
ik = (it1 (k)pl (k) ... ,i. (k)p. (k)).

4.2 Multiple Needles in the Haystack
Here we describe a modification of the procedure above when multiple entries of the signal are active (i.e..
x might have more than a single non-zero entry). The idea is to search for the significant entries of x one
at the time, using the previously developed method. Once an entry is found, no more observation energy is
allocated to it. As time proceeds one gets closer to the single needle model.

The procedure starts exactly as in the single spike case, and proceeds until one entry of p(t) exceeds a
threshold, say 0.9. As this point we infer there is significant signal value in the corresponding location, and
proceed by measuring that entry directly using a projection vector that is just a singleton. The observed
value becomes our estimate for the signal value at that location. We then restart the entire estimation
procedure, but zero-out in p(t + 1) the entry that we just measured. All the other entries of p(t + 1) are
equal (uniform prior). The procedure is iterated until the observation budget is expended. Unlike in the
single needle model it is important to measure each detected entry directly because model mismatch often
makes the estimates obtained directly from the algorithm inaccurate.

5 Experimental Comparison

In this section we demonstrate the benefits of our proposed adaptive procedure relative to traditional random
projections in several recovery tasks. First, we show that our adaptive procedure can identify true signal
components much more effectively than orthogonal matching pursuit (OMP) [8] applied to standard (non-
adaptive) random projection observations. To achieve comparable performance, OMP requires as many as
15-30 times as many observations as the adaptive procedure. Second, we demonstrate that our adaptive
sampling procedure often yields lower average reconstruction errors than standard random projections, and
the benefit becomes more pronounced as the noise power increases. For all experiments, we considered target
signals x E R , n = 213, with in = 15 nonzero entries of the same amplitude (with random signs) at random
locations, and we enforced IIXI12 = 1. Noise power is quantified by the SNR, S A= IIxF1

2 /naw.

5.1 Support Identification

First we demonstrate the effectiveness of the adaptive procedure in support identification. For a tixed SNIR.
we generated a target signal as above and ran the adaptive procedure until one of the entries of the posterior
probability vector exceeded 0.9. The required number of observations (k) was recorded, along wit h the index
of the maximum of the posterior vector (the estimate of the support). For comparison we obtained support
estimates using one index-selection step of OMP 2 applied to collections of non-adaptive random projection
observations (using n-vectors with i.i.d. ±1/v'n entries). The number of non-adaptive observations for each
of the OMP trials was a multiple of . Each experiment was termed a success if the support estimate
contained the index of at least one true signal component. The average number of observations required

2The OMIP index-selection step identifies the index i (or indices, in the case of a tie) for which Iril = maxi Ir,1 A IrJJ.,
where r = 17Y.
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Table 1: Empirical probabilities of successful support identification for the adaptive procedure and standard
random projections (using one step of OAIP). For high noise levels (small S), more than 15 times as many
random projections are needed for OAIP to match the performance of the adaptive procedure.s 10 5.0 2.0 1.5 1.0 0.9 0.81o.51o.3 1o

Average k' 16.46 17.09 20.23 21.84 26.56 27.79 30.01 39.94 58.46 1 53.9
P)8 (Adapt ive, V') 0.989 -0.985 0.960 -0.963 0.952 -- 0.953 0.969 0.977 -- 0.978 J0.995

PS(OMP, k') 0.018 0.020 0.016 0.015 0.030 0.021 0.022 0.025 0.030 0.028
P (OMP 5k') 0.485 0.412 0.412 0.379 0.392 0.397 0.387 0.384 0.386 0.419
P,(ONIP, 1Ok') 0.944 0.927 0.856 0.860 0.836 0.808 0.812 0.774 0.761 0.783
P,(ONIP, 15k') 0.993 0.994 0.982 0.981 0.967 0.966 0.962 0.938 0.910 0.891
P."(OMP, 30k') 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.998 0.994 0.993

(Average k') for one step of the adaptive procedure and the empirical probabilities of success (/',) for each
setting were determined by averaging over 1000 trials.

The results are given in Table 1. We see that adaptive sampling clearly outperforms random sampling,
and in some cases up to 30 times as many random samples are required to achieve the detection performance
of the adaptive method. It is also interesting to note that the adaptive procedure consistently identified
true components of the signal with less than 5%, error for each SNR considered. The increasing noise power
essentially affected only the number of observations needed for the algorithm to converge to a true component.

5.2 Signal Reconstruction

Next we demonstrate the advantage of adaptive samples over randoi projections for signal reconstruction.
To ascertain the effectiveness of the sampling procedure (independent of the reconstruction algorithm) we
reconstruct, in each case using (2) followed by debiasing. In addition, we eliminated the dependence of (2) on
the regularization parameter by clairvoyantly selecting the value that gave the reconstruction with the lowest
mean-square error (MSE). We used the GPSR (Gradient Projection for Sparse Reconstruction) software [9]
to efficiently perform the optimization.

Fixing the number of observations k, we ran each sampling procedure to obtain the associated sampling
matrices and observation vectors. Estimates i = i (a) were obtained for 41 distinct values of 7, given by
T = a114Vyll',, where a ranged from 0 to I uniformly in increments of 0.025, and for each estimate the
mean-square error JlFc(a) - x2Ii was computed. 3 The error associated with a given sampling procedure was
chosen to be the minimum error achieved over all tested values of a. This entire procedure was performed 40
times for each value of k, and the resulting minimum MSE's were averaged. The results of this experiment
for two different noise levels (S = 10 and S = 1.0) are shown in Fig. 1(a) and (b), respectively.

The data in Table I suggest that the adaptive procedure sequentially identifies true components of the
signal, and the number of observations for each discovery depends on the SNR. Thus, it is natural to predict
that the reconstruction error of the adaptive procedure will qualitatively match the best approximation error
of the target signal. Since all of the nonzero entries have the same amplitude, the (noise-free) approximation
error will decay linearly in the number of components that are identified - retaining T components gives
a, squared approximation error of 1 - T(1/m). For the low noise setting simulated in Fig. I(a), the data
in Table 1 suggest that one true signal component is identified for every 16.5 observations, resulting in a
predicted MSE of 1 - (k/16.5)(I/i) and full signal recovery after (16.5)(15) z 250 observations. This agrees
with the observed behavior except that as the SNR decreases, the slope of the error decay changes with
the instantaneous SNR, explaining the "flattening" of the curve. The same behavior is exhibited in the
higher-noise setting.

The reconstruction errors using random projections exhibit a different behavior. When the SNR is
high the performance is well-predicted by noiseless CS results - the reconstruction error decays to zero
exponentially in the number of observations, provided enough observations are collected to ensure that
certain submatrices of the observation matrix are well-conditioned. This explains the transitional error

3As noted in [9]. choosing r = 114Tyo guarantees an all-zero solution while r = 0 gives the least-squares solution, so this
parametrization covers t lie entire usable range of parameter values.
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Figure 1: JU SE comparisons between reconstructions obtained from adaptiv samples and random projec'tions
(solid and dashed lines, respectivel') for S = 10 and S = 1.0.

behavior for traditional complressed sensing that is apparent in Fig. 1(a). As the noise level increases, the
rate of error decay becomes only polynomial in the number of observations (see (3)). It is also interesting
to note, that when the number of observations is less than about 50 in Fig. 1l(a) and 100 in Fig. 1(b)), t he
adaptive procedure succeeds at identifying some of the true signal components while the best, reconstruct ions
using random projections have NISE comparable to the all-zero solution.

6 Conclusions and Open Problems

This paper presented a novel adaptive scheme for compressive sensing and demonstrated that it improves

performance in many situations compared to non-adaptive random projection methods, providing evidence
that while non-adaptive random projections are effective in noiseless situations, adaptivity can be verY
helpfufl in real-world problems. We compared our approach with the adaptive projection method of [5], and

although the tperformance of the latter is competitive, it is only computationally feasible for relatively sinall
problem sizes, making it intractable for the settings considered in this paper. Currently, we are investigating
methodologies with provable performance, in the spirit of [6], which also provides evidence Ithat adaptive
sampling cat outperform coipressed sensing in noisy conditions.
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Part II

Toeplitz-Structured Compressed Sensing
Matrices
7 Introduction

7.1 Background
We begin by revisiting the problem of recovering a signal x E R' from linear observations of the form

y = Ax : JxJo<m (5)

where 11o counts the number of non-zero entries in a vector, and A G Rkxn1 is a known matrix. Of particular
interest is the special case of highly underdetermined system, k < n, that has applications in many areas of signal
processing such as data compression, image processing, dimensionality reduction etc. and has recently received a lot
of attention under the rubric of compirssed sensing (CS) - starting in particular with some of the earlier works of
Candm, Romberg and Tao [1 3] and Donoho [4].

One of the fundamental problems in CS is to identify the observation matrices that are sufficient to ensure exact
recovery of x from y; we term such matrices as the CS matrices. Independently, Donoho [4], and Candes and Tao 1,3]
have provided sufficient conditions for CS matrices. In particular, it was established in [3] (and refined in [1]) that
for a k x it observation matrix A to be a CS matrix, it is sufficient that it satisfies restricted isometry property (1,11)
of order 3m in the following sense: let T C { 1,2, ... , n} and AT be the k x ITI submatrix obtained by retaining t he
colunins of A corresponding to the indices in T; then, there exists a constant 63,n E (0, 1/3) such that

V z E R 'T, (1 - 6,'n)[Iz1[2 < 1[ATz[1 < (1 + 63.,)lZ[[1 (2i)

holds for all subsets T with ITI < 3m. Moreover, it was also shown in [1] that x can be exactly recovered in that
case by the convex program

x = arg (min Jz[l subject to y = Az) (7)

which is attractive because it can be solved in a computationally tractable manner using linear programming and
convex optimization techniques see, e.g., [1,4,5]. Note that the RIP of order 3m is equivalent to saying that the

singular values of all k x 3m submatrices of 4 lie in the interval ( v/4). And while the definition of RIP does

not guarantee the existence of CS matrices, recent work has shown that (appropriately scaled) random matrices with
entries drawn independently from certain probability distributions satisfy RIP of order 3m with high probability for
every 53.. E (0, 1/3) provided k > const, m ln(i/rn) see, e.g., [1,3,4,6]; we refer to such matrices as independent
and identically distributed (lID) CS matrices.

7.2 Contribution
We show here that a k x n (partial) Toeplitz matrix A of the form

Aa . , a . i ... a 2 a l l

Oank I an+k-2 ........ ak

where the entries f ai fIk are independent ±l/vk each with probability 1/2, is also a CS matrix in the sense that it
satisfies RIP of order 3m with high probability for every 63,m E (0, 1/3) provided k > canst in 2 ln(n). Essentially, the
reduction in the number of degrees of freedom (DoF) of a Toeplitz random matrix seems to result in an increase in t he
required number of observations. Note, however, that the result established in this paper is a sufficient condition for

4This is a slightlv weaker version of the sufficient condition originally given by Candes and Tao; for the sake of brevity.
however, and because it suffices to illustrate the principles, we limit ourselves to this condition and refer the reader to [1,31 for
further details.
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exact recovery of all rn-sparse signals, and simulation results show that actual performance of Toeplitz CS matrices
tends to be comparable to that of Ill) CS matrices for many, if not all, such signals. The proof technique used for
obtaining this sufficient condition is an application of Gersgorin's Circle Theorem, augmented with a novel approach
to dealing with statistical dependencies.

The use of Toeplitz CS matrices is a desirable alternative for a number of application areas because (i) 1ll) CS
matrices require generation of 0(kn) independent random variables, which could be particularly troublesome for large-
scale applications, whereas Toeplitz CS matrices require generation of only 0(n) independent random variables; (ii)
multiplication with IID (S matrices requires 0(kn) operations resulting in longer data acquisition and reconstruction
times, while multiplication with a Toeplitz CS matrix can be efficiently implemented using fast Fourier transform
(FFT) and consequently requires only 0(n log 2 (n)) operations; and (iii) Toeplitz-structured matrices arise naturally
in certain al)plication areas such as identification of a linear time-invariant (LTI) system and consequently, Ill) (S
matrix results are not applicable in such cases.

7.3 Organization
The rest of this paper is organized as follows. In Section 8, we prove that a Toeplitz matrix of the form given in (8)
satisfies RIP with high probability. In Section 9, we discuss extensions of the result of Section 8 to circulant matrices,
left-shifted Toeplitz-structured matrices, identification of LTI systems having sparse impulse responses and recovery of
signals that are sparse in some transform domain. In Section 10, we numerically compare the performance of Toeplitz
and circulant CS matrices to that of IID ones and finally, in Section 11, we present some concluding remarks.

8 Main Result
The following r(,sult quantifies the effectiveness of Toeplitz structured sensing matrices [7].

Theorem 1. Let jil" k -1 be a sequence of i.i.d. ±l/Vk- random variables taking each value with probability 1/2.
When k > c j

2 
. log n. the k x n Toeplitz matrix (8) generated by this sequence satisfies RIP of order in with

6,, E (0, 1/3) with probability exceeding I - exp(-c2 • k/m 2 ). Here, ci and c2 are constants that depend on 6,, but
not on ni or k.

Proof. Let T C { 1, 2_. n} be a subset of indices of cardinality ITI, and let AT be the k x ITI submatrix of A formed
by retaining the columns indexed by the entries of T. We need to show that for all subsets T satisfying ITI = n, the
eigenvalues of the Gram matrix G(T) = A'TAT lie in the interval [1 - 6, 1 + 6]. For a fixed subset T, this condition
can be established using Gersgorin's circle theorem, which states that the eigenvalues of an m x m matrix G all lie
in the union of in discs, where the i-th disc is centered at the diagonal entry Gij and has radius

R(i) = G G[. (9)
J--1,jti

Notice that by choice of the ai's, G.j(T) = 1 deterministically. Thus, to establish that the eigenvalues lie in [1 -6, 1 +61
for a fixed T, it is sufficient. to show that the off-diagonal entries of G(T) are all less than 6in in abso)lute value.
since this would imply R(i) < (in - I)(6/ni) < 6 for all i.

To guarantee the RIP condition, however, the eigenvalue bounds must hold for all subsets T that satisfy ITI = in.
To this end, we consider the full n x n Gram matrix of A, G = A'A, and show that the off-diagonal entries of G are
all bounded above by 6in in absolute value. The implication is that, since the Gram matrix G(T) corresponding
to any subset T satisfying TI = ni is itself a submatrix of G, G(T) has bounded off-diagonals and, therefore, the
eigenvalues of all (, ,) Gram matrices G(T) lie in [I - 6,1 + 6].

To proceed, notice that each off-diagonal term of G is simply the inner product between i-th and j-th column of
A, and thus G,,, = ,Gj. We can write an expression for the off-diagonal element Gj as

k

Gi, an j+tan__+.3 *.(t)

Standard concentration inequalities are not directly applicable here because all of the entries in the sum are riot
mutually independent. For example, consider i = n - 1, j = n, and k = 4. Then Gn--,n = aa2 + a2a3 + a3a4 +a-lar,
and the first two terms are dependent (through a2), as are the second and third (through a3), etc. But, notice that
the first and third terms are independent as are the second and fourth. Overall this sum may be split into two sunis
of i.i.d. random variables, where each component sum is formed simply by grouping alternating terms. The number
of terms in each sum is either the same (if k is even) or differs by one if k is odd.
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In fact this decomposition is possible for every G,j, and this observation provides the key to tolerating the
dependencies that arise from the structure in the sensing matrix. Note that the terms in any such surn are each
dependent with at most two other terms in the sum. Thus, each sum can be rearranged such that the dependent
terms are "chained" that is, the f-th (rearranged) term is dependent with (at most) the (f - 1)-st term and the
(f + 1)-st terms. This rearranged sum has the same structure as the example above, and can be split in a similar
fashion simply by grouping alternating terms.

When k is even, each sum can be decomposed as

q A I 2 q

= >1 g C=ZIAI)

where ge and ge denote the rearranged and reindexed terms (which are now ±1/k random variables), while

ge= + Y gi (12)
S1f=1

when k is odd. Generically, we write G,.j = Gi,j +G?j. We analyze each component sum using Hoeffding's (two-sided)
inequality for bounded random variables to obtain, for example,

I ~ ~ -f2k 2 \
Pr (IGj), I> ) < 2exp ( -k), (13)

and choosing f= 6/2n yields

Pr 1 >6/27) < 2exp (8q . (1)

Considering both sums. we can write

Pr (IG;,jI > 61in)

< Pr ({I,,1,jI > 6/2m} or fIGII >6/21))

< 2max {Pr (IG!,jl > 6/2m) ,Pr (IGj,I > J/2n)}

* fmx2exp -6 2 k2  2ep-6
2 k 2

< 2max x 8qi , 2exp ) I (15)

Notice that smaller values of ql and q2 lead to tighter bounds, and thus the slowest rate of concentration occurs when
the number of nonzero terms in G.j is largest. This occurs when k is odd, and q2 = (k + 1)/2. Using the (loose)
upper bounds qi < q2 < k, we obtain

Pr(IG',,jI > 6/r) < 4exp -2k). (1t)

To establish RIP we require that each of the n(n- 1)/2 unique off-diagonal terms G ,j satisfy this hound. Applying
tlie itnion bound yields

Pr (any IGj I > /n) < 4n
2 exp ( 8m2

< exp(-68 2  +3logn). (17)

where the last step follows under the mild assumption that n > 4. Now, notice that whenever 62 k/8m > 3 log n, or

k > 1 HIP is satisfied with probability at least

-62kex p \\- + 31log p).(

( 8In

This success probability is nonzero and can be very close to one when k is large compared to r .

Before discussing natural extensions to Toeplitz CS matrices, it is instructional to compare the result of Theorem I
with that for Il1) CS matrices. Specifically, previous work has shown that IlD CS matrices generated from certain
distributions satisfy HIP of order 3m for every 63,, E (0, 1/3) with probability > 1 _e -

,2 provided k > c'I in ln(n/in),
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where c'1, c'2 > 0 are constants depending only on 63?n - see, e.g., [3,6]. It might be tempting, therefore, to conclude
that reduction in the number of )oFs of a Toeplitz matrix from O(kn) to O(n) results in a factor of O(m) increase
in the required number of observations. One needs to apply caution, however, as Theorem I bounds the worst case
performance of Toeplitz CS matrices for all in-sparse signals and it might very well be that this oversampling is not
required for most signals in the class. Extensive simulations carried out for a number of m-sparse signals using 1ll)
and Toeplitz matrices of equal dimensions, in fact, support this intuition. It is also interesting to note that somewhat
similar numerical results (without any performance guarantees) have been reported in [8] in the context of random
filters.

9 Extensions
In this section, we discuss natural extensions of the result of Section 8 to circulant and left-shifted Toeplitz-structured
matrices. Further, we also describe how the results for Toeplitz-structured CS matrices lend themselves to (i)
identification of LTI systems having sparse impulse responses; and (ii) recovery of signals that are either piecewise
constant (PWC) or sparse in the Haar wavelet domain.

9.1 Circulant CS Matrices
Theorem 2. Suppose that n, m are given, and let A be a k x n (partial) circulant matrix of the form

an an-I ... a2 al
al a. ... a3 a2

ak-- I ak 2 ......... k

where the entries {o }_ are ±Vk/v, each with probability 1/2. Then, them exist constants c'1', c > 0 depending only
on 63,,, such that for any k > c'i' 2 In(n), A satisfies RIP of order 3m for every 6, E (0, 1) uith probability at least

1 - e - ck/~2 . (20)

Sketch of Proof. The same proof applies here as in the Toeplitz case, as the dependency structure among columns is
the same as in the original setting.

9.2 Left-shifted Toeplitz and Circulant CS Matrices
The results of Theorem 1 and 2 apply equally well to left-shifted Toeplitz and circulant matrices of the form[l 0 2 ... an-i an1

a2 a3 .. an an f I I (21)
/ / .

k ....... a,, k--2 an k 1

and

ai 02 ... an-i1 an
2 a3 ... an a

0
k-/ ak (22)

a k . . . ak -2 ak-1

because the dependency structures among columns are the same as the original case.

9.3 System Identification
The area of estimation of the impulse response of an LTI system from the knowledge of its input and output
signals, commonly termed as system identification, is of considerable importance in signal processing because of its
applicability to a wide range of problems - see, e.g., [9,10]. In the case of a finite impulse response (FIR) LTI system,
this typically involves probing the system with a (known) white noise sequence of duration orders of magnitude
greater than that of the impulse response [11], which may be prohibitive because of the delay incurred in solving for
the impulse response and the difficulty of generating a truly white noise sequence. For the purposes of deconvolving
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an LTI system having a sparse impulse response, however, a more promising alternative is to appeal to the results of
Section 8.

As an illustration, let x[f) be an in-sparse impulse response of an LTI system (of duration n) and all] be an I1)
squence of duration (n + k - 1) that has been drawn from one of the probability distributions given in (??). Then,
probing the given system with a[[] yields y[f] = a[] * x[f] and the theory of CS along with Theorem I guarantees
that, with high probability, x[f] (an be exactly recovered by solving the convex program

arg min !jzllI subject to y = Az) , (23)
(ZI-R"

where, in this ease, y [ . , and

_Y[lu + k - 21_[a[n - 11 oin - 21 a[11 a[O]
a [n] a[n - 11 ... a[2] a[l ] I

A=I

La [+k-2] a[n+k-3] .k "- 1].

9.4 Beyond Sparse Signals

We have proven above that Toeplitz (and circulant) matrices, having entries drawn independently from probability
distributions that yield IID CS matrices, satisfy RIP of order 3m with high probability. Often, we are interested
in signals that are sparse in some transform domain tPp # I, i.e., x = '*O and 0 E R" is m-sparse, in which case it
is required that the product matrix A%P satisfies RIP of order 3m for successful recovery of 0 (and hence x). This
is indeed the case when A happens to be an IID CS matrix and 'I is any orthonormal basis [6]. Toeplitz matrices,
however, seem to lack this universality property because of their highly structured nature. Nevertheless, the results
of Section 8 can still be leveraged to design CS matrices for fixed transformations to retain some of the benefits of
Toeplitz-structured CS matrices such as generation of only 0(n) independent random variables, and faster acquisit ion
and reconstruction algorithms.

As an illustration, let x be an ?n-piece PWC signal; such a signal can be written as x = LO, where 0 E R" is
in-sparse and L E R " " the discrete integral transform - is given by

'1 0 ... 01[:0
Further, let fa, kl 1 be a sequence of independent ±liv/'k random variables and A L E Rk> '  be the cascade of a
k x n Toeplitz matrix A and the ni x n differencing operator

D= 1 1 , (25)

that is,

F (a,. a,,- I) . .. (02 - a,) ai]
(a,, i -a.) ... (a3- a2) a2,AL = (26)

(an+,k - -a,,+k 2) *. (ak±i1 ak) ak.

Then, by construCtio. (i) AL has only (n + k - 1) DoFs; (ii) multiplication with AL = AlD requires only O(n log 2(1))
operations: an( (iii) the product matrix AjL = ADL = A is a Toeplitz CS matrix and consequently, satisies RIP
with high probability. Likewise, if x happened to be rn-sparse in the Haar wavelet domain, i.e., q, = W- (the inverse
Ilaar wavelet transform matrix), then a CS matrix of the form Aw = AW would also have these three properties.
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Figure 2: Empirical probability of success as a function of number of observations k (n = 2048, in 20).

10 Numerical Results

In this section, we numerically compare the performance of Toeplitz and circulant CS matrices to that. of 1ll) ones.
The experimental setup involves generating a length n = 2048 signal with randomly placed m = 20 non-zero entries
drawn independent ly from JV(0, 1). Each such generated signal is sampled using k x n lID, Toeplitz and circulant ma-
trices with entries drawn independently from the Bernoulli = { + 2with probability , - with probability

distribution and reconstructed using the gradient projection algorithm described in [5], where matrix mult iplicat ions
are carried out using FFT in the case of Toeplitz and circulant observation matrices. Success is declared if the
algorithm exactly recovers the signal (taking into account machine precision errors), and the empirical probability
of success for each value of k is determined by repeating this process 1000 times and calculating the fraction of
successes. While running this experiment for all x E R' or even all (20s) unique sparsity patterns does not seeni
possible, simulation results show that for a large number of synthesized signals (and for the reasons described earlier),
Toeplitz and circulant matrices perform as well as lID ones in terms of the empirical probability of success. We plot
the empirical probability of success versus number of observations k for one such signal in Fig. 2.

11 Conclusions
In this part of the final report, we have shown that Toeplitz-structured matrices with random entries drawn inde-
pendently from a certain probability distribution are also sufficient to recover undersampled sparse signals. The use
of suchi matrices is a desirable alternative for a number of application areas because it greatly reduces the computa-
tional and storage complexity in large-dimensional problems. s The result presented here can be extended to random
Toeplitz matrices with entries are drawn from other distributions (such as zero-mean Gaussian) using similar proof
techniques.
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Part III

Some Comparisons of NoLAff and
Randomized Projection approaches and
Future Directions
There are several future research directions we are considering. One such direction is comparing the performance of
"traditional" CS techniques that rely on a single input channel using randomized projections and other techniques
such as the Nyquist Folding receiver (NYFR) with multiple channels or the Nonlinear Affine (NoLAff) receiver. The
next section describes some of the obvious differences of the various techniques from a sparseness pattern perspective.
One approach to analyzing such approaches (e.g., NYFR and NoLAff) is based on having two channels. One which
is simply ant undersampling of the received signal and the second which is encoded either via a sensing matrix or an
approximation to one.

This two channel analysis for A-to-I may help with examining the limits of single channel NoLAff in the sense
that that single channel contains both a linear (undersampled) stream of data as well as a nonlinear affine stream of
data, which in turn is used to remove the ambiguity.

We then compare the NoLAff approach to L1-L2 techniques from an encoding matrix point of view. This provides
further context for choosing non-random or structured forms of encoding.

12 A comparison of Undersampling Approaches From A Sparse-
ness Pattern Perspective

A potentially useful way to compare and analyze various undersampling approaches is based on examining the various
approaches from a sparseness pattern perspective. Various algorithms treat the issue of sparseness pattern different ly
and consequentlv, regardless of actual implementation issues and indeed algorithm specifics, we can intuitively under-
stand the differences in performance bounds and sensitivity between these approaches. In the following we examine,
the problem of sparseness patterns and undersampling for several approaches including: standard compressive sensing
approaches which assume nothing about such patterns (e.g., basis pursuit in its various incarnations), NoLAff, and
Varable Projection and Unfolding (VPU).

We start with the standard formulation of the problem where we have n samples (possibly samples per unit
time, or per unit space, etc.) of a signal x which in described fully in some known decomposition 4D (basis or mich
larger dictionary) with only k non-zero coefficients. That is k represents the information content (or possibly the
information rate, or information density). We Note that we are ignoring for the sake of this discussion important
issues such as the number of bits with which these n samples and k coefficients must have to accurately recover the
signal x. One of the fundamental question in the A-to-I program is: how few samples m can we use to accurately
reconstruct x? Further we would like to get an intuitive feeling for the cost of reconstructing x from these n. samples
and what sensitivities do reconstruction algorithms have.

We note that the nt samples are taken from y rather than from x where y is some transformation of a, that ensures
that all nec(sary information about x is highly likely to be present in the samples of y. The transformation in question
is often represented in the form of a "random" projection of x, say y = *x where 0 is assumed to be known. In the
case of NoLAff the transformation is not such a linear operator but rather a nonlinear and affine transformation:
however, the conditions on the NoLAff encoder are similar in spirit to those of the "random" projection.

Without a so called "genie" aided solution where we know a priori which k coefficients are non-zero we have at
least (") possible combinations of non-zero coefficient choices 6. These are the sparseness patterns we seek; that is we
wish to know the location of the k non-zero coefficients as well of course as their value. In some cases knowing just
the location is sufficient, such as in detection settings.

12.0.1 The trivial solution

Having described the problem at hand in these term we examine some potential solutions. The trivial approach is to
search all (") combinations and to minimize the error between the observations y and the transformed signal x. For

6In the case of dictionaries that are made say of multiple bases we may have a significantly larger number of sparseiess
patterns to choose from.
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example we could choose to solve the L2 , Lo problem

mitn Ily - 'VDsI12 s.t. Ijsjj < k (27)
all sparseness patterns

where s represents the k-sparse signal of the dictionary's coefficients. Equivalently in the truly noiseless case we can
reformulate this as

min 1s1l, s.t. y = %IPs. (28)

Needless to say, this approach is computationally intractable and indeed solving it as such has combinatorial com-
plexity that is irre(ducible in general. However, were we to choose this as our algorithm for reconstruction we could
have in > k assurning the transformation 41 is chosen appropriately.

12.0.2 Standard compressive sensing approaches

A far superior class of approaches is derived from the insight which shown that L2, Lo problems such as that stat(d
above can under some conditions be solved exactly using a L2 , L1 problem. For example we replace (28) with

min Isil s.t. y = %V' s. (29)

Here we have a linear programing problem which is inherently a low complexity one. Or in the noisy case we imay
solve convex optimization problems such as

min{fly - + AIIsL } (io)

which are also tractable. However, since we (to not know the sparseness pattern of s we must include more samples
than merely those that represent the value of the non-zero entries. We must include enough samples to also decode
the location of those k samples. Indeed to encode these k position among at least n locations we require something
like in > ck log(n). Where c is a constant that depends on many things including the algorithm's specifics which we
ignore for the present, discussion. The point however is that we are paying a price for not knowing the sparseness
pattern.

12.0.3 NoLAff

The NoLAff approach provides a transformation (encoding) and a reconstruction algorithm (decoding) that do(,
not lose all the sparseness pattern information (unlike standard CS approaches). indeed in NoLAff following a mild
nonlinear affine transform which retains much of the original signal x we undersample by a factor of n/m. That is
we retain m samples in which the k basis vectors of interest are present up to the obvious n/in-ary ambiguity (due to
aliasing). The residual nonlinear component of the i samples contains enough information to resolve the ambiguity
since each of the n/m. Nyquist zones is associated with a different (and known) nonlinear and affine transformation
characteristic. By solving the resulting rn/n hypothesis testing problem k times we reconstruct the signal x. Since
we did not lose the sparseness pattern using NoLAff we can have as few as in = k samples (much like the trivial
approach above). We note however that solving trivial hypothesis testing problems and undoing the simple know
nonlinearities are very low complexity operations. Hence we have the best of both the trivial approach and the
standard ('S approaches.

12.0.4 VPU

Finally, we discus s VPU in the ternis of sparseness patterns. Without going into too much algorithmic detail we
can describe VPII's approach as follows: 1) scan all the rank one subspaces (in cP) for the "best" ones and keep the
"winners", 2) scan all the contiguous rank 2 subspaces (in (I) for the "best" ones and keep the "winners', 3) repeat
for higher rank contiguous subspaces. We of course go no higher than rank in signals. This approach has many
advantages as well as some significant disadvantages, principally computational complexity.

We can think of VPU as a "greedy" algorithm that chooses (suboptimally) the best subspace found so far
containing signals, by enumerating the various combinations in a given order. This allows us to utilize any prior
information about the likelihood of particular signal subspaces appearing in the received signal of interest. It is clear
therefore why VPU has high computational complexity relative to other CS algorithms while at the sante time having
superior reconstruction accuracy when one chooses the order of subspace enumeration intelligently.
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12.0.5 Some Additional Comparative Remarks

We note that due to their nature both NoLAff and VPV have some additional robustness to noise compared wit ih
standard (S approaches. In addition NoLAff has much better robustness to large dynamic range differences between
signal components. A further distinction that NoLAff has is that it clearly does not require ant Nyquist rate switching
circuits in its encoder.

While VPIT has a significant computational complexity penalty we note that the idea of exploiting additional
information about the signal: space is one which should indeed be considered carefully. Whether any additional
information about the sparseness pattern is known a priori or adaptively we assume that we can get superior recon-
struction of the signal x using that information. It should be pointed out that VPU does have the ability to treat
any sparseness pattern (not just those it explicitly scans over) in the sense that scanning through all the rank or
subspaces does indeed allow any pattern to exist. However, if VPU stopped there it would be essentially equivalent
to orthogonal matched pursuit techniques (if using rank 1 subspace)and would suffer from the same limitations.

We note that, these algorithmic approaches are therefore qualitatively different from the class of standard CS tech-
niques that must recover the sparseness pattern without encoding it (as in NoLAff) or making additional assumptions
(as in VPV).

13 A NoLAff Comparison to L1-L 2 Sparse Reconstruction
A special case of nonlinear sensing involves nonlinear analog encoding in the presence of a strong well defined signal
p (e.g., a probe signal injected additionally into the receiver stream).

Let x be an input signal to a receiver and let a dictionary matrix T be assembled, where the columns span the
vector space of input signals

x = TO,. (3t)

The vector 0 is referred to as the information vector.
The signal x, is passed through a nonlinear system NoLAff0, producing output

f(x) = g(x + p) - g(p), (32)

where p represents the probe signal and the function g(.) implements the nonlinearity

g(.) = a() . (
i. 1

WLOG, g here is menmorvless. lement-wise multiplication and exponentiation are denoted with a -where appropriae.
The output of the NoLAff function is approximately linear wrt the input when

Hp[1 >> 11x[1

In this cas.

f(x) g-- g(x+p)-g(p)

a ok(x + p)k - a,,p"
k I r -lI

akX. p (k-l) (31)
k-1

Therefore,

= _,,.diag(p)(k 1)1 x

= NLX (16)

where NL a- Ok diag(p)yk I)
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Figure 3: Sensing matrix decomposition for a single probe NoLAff receiver.

Let the measurement model to be

y = 4f(TO)

-DNLTO. (37)

Hence, the calculations for the convexity of the LASSO type cost function are simplified. Starting from

J(6) = Ily - PNLTOI + A 11011 (3is)

and
J(O) = y -NLT-TO, (39)

the gradient is

VJ(O) = O (0)

= 2.TfNL H 41H4,NLT0 - 2 yH -NLT, (40)

and therefore the Hessian is

V2 J() = vj(o)

= 2.T'NL 1 4NLT. (1)

Equation (41) is positive semi-definite therefore the cost function is convex for the NoLAff modulation.

13.0.6 Right-Side Factorization

An interesting alternate NoLAff derivation is the right hand decomposition which creates an output signal dictionary.
Thus both the input and the output are sparsely represented in their respective dictionaries. We note that the output,
signal is not sparse in the input dictionary and hence can be decoded from an undersampled representation, however
it is sparse in the new dictionary. T is a nonlinear affine transformation of T. The complex coefficients which describe
how the NoLAff function spreads information from dictionary T into the dictionary t can be collected into an n x n
matrix Nr, such that

T-NR = i. (42)

We note that the output dictionary is a function of our choice of probe signal.
One can depict the notion of (S via a NoLAff inspired sensing matrix as in Figure 3. Here the ADC is preceded

by a nonlinear device that contains a linear pass-through and a third order nonlinearity. The input into the receiver
is of course augmented by a tonal probe and standard assumptions of relatively weak nonlinearities and a very strong
probe holds. We choose here a DFT matrix as the dictionary.

It is clear that the sensing matrix here has retained much of the orthogonality of the input dictionary in the
output. And therefore we can easily conceive of other decoding schemes that do not require convex optimization
with all its drawbacks. In particular we note that the issue of dynamic range of input signals is one that is inherent lY
limited by the LI-L2 optimization approach. While here there is very little overlap between various signal components
in the output. Pictorially these can be seen as the yellow squares in Figure 3. We note that the main diagonal is
directly representing the linear passthrough component.

We further note that such an encoding based on NoLAff provides a sliding scale of signal spreading from the one
just described in which much of the input orthogonality and sparseness is preserved to an almost random one. One
just has to add several more probe signals as depicted in Figure 4.
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Figure 4: A NoLAff sensing matrix with three probes.

14 A summary and Some Final Thoughts
In all the approaches to compressive sensing explored in this work there are some common threads that relate to
moving away from purely random encoding of undersampled data. In the Toeplitz structured sensing matrix approach
describe(d al)ove we have shown that having a highly structured (and hence a practically efficient) sensing matrix is
possible without degradation of reconstruction performance. The adaptive approach described above starts from a
randomized sensing matrix which is a "democratic" approach but quickly utilizes the partial information gathered
with each sample to move adaptively to a data dependent sensing matrix. The comparisons of randomized projection
approaches (e.g., L2-LI techniques) to NoLAff provides yet another take on this theme of moving away from purely
randomized projections. While NoLAff does not strictly speaking use a sensing matrix it nonetheless can be shown
to have nearly equivalent encoding structures that can be described in the quasi linear approximation cases as a
deterministic sensing matrix. This approach in particular allows us to move away from the convex optimization
decoding approaches to a hypothesis testing approach which has been shown to be highly efficient from a data rate
perspective; essentially allowing innovations rate sampling.
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